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§ 1. Introduction

Maltistate structure functions have been studied by Barlow and Wa

(1978), El-Neweihi, Proschan and Sethurmn (1978) (henceforth EJS) and

Griffith (1980). These structure functions have been developed in order

to deal with the situations where components and systems have more than

two states. Prior to these papers most research had concentrated on the

situation where the components and system could only take binary values

corresponding to "failed" and "operating" states.

In this paper we obtain a decomposition for multistate structure

functions. This is Theorem 2.8 (see also Theorem 2.11) of Section 2.

This result is applied to find systm bounds in Section 3 and

to interpret the multistate structures of Barlow and W11 in Section 6.

(bncepts of multistate iqportance and coherence are discussed in See-

tions 4 and 5.

Extensions to the contirmous ca4e for the decomposition have been

completed and will appear elsewhere.

§ Multistate structure functions and decouposition results.

let S -'{0, 1,...,Ml and 0: Sn - S be a nondecreasing function.

The values taken by 0 will represent the system performance and, for

esch i, xi will denote the performance of the ith component. We dis-

ti.nuish M+I performance levels ranging from perfect functioning

(l-ol M) to complete failure (level 0). The assumption that ID is non-

esrcreasing corresponds to the notion that improvement of a conponent

cannot lead to a worsening of the system. 14 ' c

Rf-ore we state any of our results we should first note that the 7,'
ebbrr Pet up is really the moet general in the finite state case. For /

sippose that we can distinguish among .i+l performance levels for cor- '

,'.



porent i, which we designate by Si . {0,1,...,Mi}, and that we can dis-

tinguish among N+l perfomanee levels for the system 4, which we. desig-

nate by E -{0,l,...,N}. Thus 0: SIx...xS n-E. Now let M = max{

M, NJ and set S -tO,I,...,M). We define a new system function

W: Sn_-S by (xl,...,Xn) n Alxllan...,xA . n ). Clearly is nondecreasinr

if 0 is. Later on we also impose the condition that (,

Since this may not be the case above, we simply redefine T, to be 1.1 on

the set where it had the value N. Of course, 'if one prefers to vxerk dir-

ectly with the given 4 instead of . all of our results cnn be appropriately

modified to handle this case.

We now give sane elementary conditions and implications concrrning

the monotonicity of 4. The first tw parts of the follmvin7 rnmilt. rir-

consequences of results in Griffith (1980).

(21) proposition. Let .: Sn _,Swherp S =0,l,..'}.

1. 4 is nondecreasing if and only if either of the fo] owin. con-

ditions hold:

(i) 4(x,:) > 4(x)v t(y) for all x, c S

(I ) O(X AY) < 0(x) A4(y) for all x, y. , n

2. If 4 is nondecreasing, then for all x = (x I,...,xn) r

(i) min xi <_ (x) if and only if 4(k) > k for all k v S,
i

(ii) 0(x) < max x i if and only if O(k) <_ k for all k c S.
i

Consequently, min xi  O (x) < max xi if and only if 1(k) k for
i ii

all k E S.

3. If 4 is nondecreasing, then

(i) max 4 (xiO) 4(x)< max (xi
. . . . i"



-3-

(ii) O(min xi ) < 0(1) < 0(max xi).
i i

Furthermore, these bounds are not compatible in the sense that there

exist system 0 for which (i) is a better bound than (ii) and vice-versa.

4. (i) ¢(xvy) = 0(x) v 0(y) for all x, y E Sn if and only if

O(x) = max hi(xi) where hi(,j ) = O(ji0).! ~i '

(ii) O(_ayj 0(x) A 0(y) for all x, y E Sn if and only if

O(X) = min lli(xi) where 1li(j) 0 ILI).
i I

Here we use the notation O(xi ,.) = ((yI... yi-l'xi'yi+l''...Yn ) and

k = (k,...,k).

For the next results besides assuming 0 is nondecreasing, we impose the

condition that 0(0) = 0 and O(M) - M. This merely states that if all com-

ponents fail, the system fails and if all components are functioning, per-

fectly, the system functions perfectly. We do not make the assumption

imposed by EPS and Griffith that ¢(k) = k for k =1,... ,l-. We wil1

call such a function 0 a multistate monotone structure function (MS).

(2.2) Definition. A vector x called an upper (lover) vector for level k

of an RPV if O(x) > k(O(x) < k). It is called a critical up=r (lower)

vector for level k if in addition y<x and jx implies (y) <z (if Y >x

and y' xf implies 0(y) > k).

The set of all critical upper (lower) vectors for level k is denoted

by U or U (@) if necessary (Lk or Lk(O)). If x C Uk, k = 1,2,...,M, let

Uk(x-) - Uk(0;x) { (i'x.) x i 0);

if x Lk0 =Ol, ... ,Mt-l ,let

Lk(x) = Yk(0x) { (lx,): xi  .

As we will see, these sets play the role of min path sets and min cut sets

respectively.
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As usual the concept of duality changes upper vector concepts to laver

vector concepts. More precisely, if t is an MV , then ( x) = M-(M-x) is

also an INS called the dual of 0. The proofs of the following two results

are obvious.

(2.3) Theoren. The vector x is an upper vector for level k of d if and

only if M_-'x is a lower vector for level M-k of 4c. Fu1rthermore, x F TT (o)

if and only if N!-x c k(oD).

(2.4) Theorem. For k > 0, (x)>k if and only if x > x0 for some XO  U k .

(2.5) Remark. The assumption 0(M) - h ixnplies Uk ¢ for k = 1,... ,l, and

f implie O(M) - M.

Now we define the binary function Ok of M-n binary variables

y (y j: 1 < i< n, I <-j < M) by

(2.6) mka) = ix Iy k = 1

xcUk (i,J)EcT-T(x)

Although this function is defined for Lll M-n values of y, 1'w are only

interested in this function on the domain given by the iriac of the fn]-

lowing function. We define a: S n - (0 , 1 }M' n by a(x) = (ai (x): n , I

1 < M), where x c Sn and a i(x) = 1 if xi > j amn 0 nthervisn.

(2.7) Lma. For k > 0, O(x) > k if and only if eR1 (a(x)) = ].

(2.8) Theorem. O(x) - I O(ax)).
k=l

Since the proofs are straightforward, we ornit thEn. Theorq. (2.8) is

a type of deconposition reilt analogous to those usi; mn palh .iots in the

binary case.

(2.9) Panarks. (i) Tote that *1 (a(x)) > ¢2(a(x)) >...> ¢M(a(x)); cvjuivn-

lently, *1 2 ->  on A - a(, n ) _{r(yij): if y.. = 1, thn Yi=

for all t - 1,...,J}.
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(i) The min path sets of the binary C in the sense of Rarlow and Proschan

(1975) are precisely the sets' {Uk(x): x e YlkI.

(iii) Although the k are binary structure functions, other concepts

discussed in Barlow and Proscban such as min path vectors, rnin cit vec-

tors, etc. don't correspond exactly to the concepts discussed here; how-

ever, if these binary concepts are modified for k restricted to A, then

there is a correspondence between the two notions.

(iV) If f,." are binary monotone structure functions of the binary

variables (yij: 1 <. i . n, 1 < j _ M) satisfying (i), then O(x)

k 1 (G(__x)) is a multistate structure function; 
furthermore, if

are the binary monotone structure functions in the decanposition Theorem

2.8 of t then *k - k on A for all k = 1,...,M.

(2.10) Example. An e'ample will serve to illustrate the procedure. TPt

0-{0,1,2)2 *0,1,21 with 0 - 0(0,0)ik O(1,0), 1 = 0(0,1) 0 (0,2) =

0(1,2) (l,l), 2 - 0(2,0) - #(2,1) = 0(2,2). Then

U 1  {(2,0), (0,1)}, TT2 { (2,0)1

and

U1 (2,0) - ((1,2)) = T1(2,0),

U 1(0,1)- (,).

Then

02Q) - max min Yij = Y12

xcU2  (i,j)CU2 (x)

and

01(y) = X mmxin y = max (y
xcU1  (ij)cU 1 (x) j

where we have
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2
x i(0x) ¢l(a(x)) €2 (a(x)) 0(x) =k , IC(x))

(0,0) (0,0,0,0) 0 0 0

(011) (0o,110,) 1 0 1
(0,2) (0,0,1,1) 1 0 1.

(1,) (10,0,1,) 0 0 0

(1,1) (1,0,1,0) 1 0 1

(1,2) (1,0,1,1) 1 0 1

(2,0) (1,1,0.0) 1 0 2

(2,1) (1,1,1,0) 1 1 2

(2,2) (1,1,1,1) 1 1 2

A similar decomposition can be obtained using critical lower vec-

tore. Uore precisely, define the binary structure fumction of the

MUnbinar variables z- (zjj : < i kn, 0< J _ -1) by

*k(z) min max zij
xLk  (i J )cLk(x)

for k - 0,1,..., U-1. As in the previous case we restrict the domain of

Vk(s) to the image of 8 :8Sn _,.{ 0,1 1M where (x) = (0j(x) :< i<n

0 < j .M-1) and8 i(x) m0 if xI . j and 1 otherwise.
M-1

(2.11) Theorem. *(x) - F
k-0

Proof. The proof is nxt easily obtained by duality arguments.

(2.12) Rnmark. It should be noted that *k(a(x)) - Okl((x)) and

aij(j )
0

1 jl(X) for all k-l,... ,M, i-i,...,n, J-i,... ,M and x E Sn .
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We will make use of this observation in Section 3.

We now consider the stochastic behavior. Let Xi(t) be a right-con-

timous nonincreasing stochastic process with values in S; i.e., Xi(t)

represesa the statistical behavior of cmnponent i. Set X (t) =( t),...,

X(t)). We define

T intt> 0 : Xi(t) < J )

Tk = infft> 0 : 4(X(t)) < k}

for i - 1..., n and J, k - 0,1,..., U-I.

(2.13) Theorem. For k = 0,1,..., W-1,

T= max min Ti...

YT'k 1 (ij)cjk+l(x)

-min max, TxYL k  (iJ) (x) T j

Proof. First we observe that t(X(t)) < k if and only if k+1 (a(X(t))) 0.

(bnsequently, Tk - Tk+l where k+l= if { t _> '3 : +((X(t))) = 0}. ut

from the results in the binary case,

k41T -max min T
xcU.l(,)Uk+l (X

where-ij - in (t 0 : aij(_(t)) - 0). Since

Tij - int t > 0 aiQ(X(t)) - 01 - in ft > 0 Xi(t) <J}

- irf (t > 0: Xi(t) . J-1) - Ti'j I

we are done. The second half follows similarly.
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13. Bounds

EPS (1978) have obtained bounds on the system performance function

E[(X)J Where X-(X...,X) is the state vector which is assumed to have

independent components and t is an ?WV which satisfies O(k)=k for all kcS.

The bounds given are

M n M nH FP (j-1) S< E[xx)] I I:' I- T1 Pi(J-l)}
J=l inI -- l i=l

where P (J) - P(X<J) and Pi(J) - 1-Pi(J). ,It should be observed that

this result still holds if the components are assumed to be associated.

In this section we use the deccmposition (2.8) and (2.11) along with

the remark (2.12) to obtain bounds based on the upper and lorr critical

vectors. Let P(J) - P(O(X) <_ J) and P(J) = 1-P(j).

(3.1) Lemu. Let € be an IS and k=O,l,...,M-1.

(a) The following bounds alwaysi-hold:

max PA{ X>J-1)) K P(k) < min P(G{ X>j)
ZCUk+ 1  (" J )"Uk .(y-) XEIc (iJ)ELk(Y)

(b) If the X are associated, then

max 1 r)(J -1) < (k) < min it Pi(j)
xZUk+1  (iJ)cUk+l(y) y-eL k  ("~j) c T'(Y)

and

II P(U(Xi>J)) P (k) _ P(nf{li>i-1})

ZELk  (" J )€]k(y) Y-crk+1 (iJ)c'Tk+l(Y)

(c) If the Xi are independent, then

II . P(i) 1. 0(k) < it JL P.(,-1))

ycLk (ii)I.(y) Y.Tk+l (i ,J )T 1 )
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Proof. (a) This is easy.

(b) The first set of bonds is a consequence of (a) and association.

The second set follows since the collections

K max and nc. aj~(
(i,J) ) i,j)c k+ 1 ( . - )  -

are each collections of associated random variables.

(C) This follows from the second set of inequalities in (b).

(3.2) Note. The bounds in b) are also valid under the w Iker assumptions

that the gamponents satisfy an appropriate type of orthnnt dependence as

discussed by Aied et al (1978).

(3.3) Theorem. Under the assumption that the components of the !YMS D are

independent,

V nm~m I~ (-1) ,IT JiL fi(j < - hO
Mk-. Y7Tjk (i'J)EUkY-) yl (i'j>ElI -1(-y)-I

M

Imin min A1 f;(j) IT (j1J

PrT,". We need onl r uee fly' f'.t that

E(O(X)) ' ,I j nd srply thv-, TLom.

(3.4) Note. Tlsny t r7 notntion of Tcnr rn .1' rnd recognizing that

{ X >.(t),q i,, . if tho T n , TTF v- Trf the re.ults of Ohapter

A* FCtion S r J. PI.ro", In't Pror clnn ( cnW) cnr b) - anplied to obtain hounds

nn P i TI,>t1 nn'! so on F(VfY(t)) by th -i, tri-rc-.
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14. Some remarks about coherence assnMptions.

As was remarked earlier, EPS (1978) and Griffith (1980) also studied

the deterministic properties of multistate monotone structure functions

in the finite state case. Besides the basic monotonicity assumtion, ho-

ever, they assumed that 0(k) = k for all k c S plus a type of coherence

assumption. In Griffith (1980) three distinct coherence conditions are

delineated which we list below.

(SC): 0 is said to be strongly coherent if for any component i and any

level J, there exists x such that (j , x) = j while 7(ki , x) t j

for I f J.

(C): 0 is said to be coherent if for any component i and any level

j > 1, there exists x such that 4((j-l) i , x) i x).

(WC): 0 is said to be weakl, coherent if for any conmponent i, there exists

x such that 0(01 , x)< 001i ,. !).

EPS (1978) assumed condition (SC) for their class whereas Griffith (9,O0)

showed that all of the results of (1978) hold under the assumption of

(C), but sane are false under (WC). Loosely speaking, condi ti on (S() says

that every level of every component is relevant to the si- 1 evel of tho

system 0; condition (C) says that every level of ever, comonent is role-

vant to the system 0; condition (WC) says that every co monent is relevant

to the system 4.

In terns of the decomposition (2.8), we can paraphrase the above as

follows. The system 0 is coherent if and only if for every i and j, yij

is relevant to some )k; 0 is weakly coherent if and only if there exists

j such that yij is relevant to some Ok. The condition of strong coherence

and the conditions O(k) > k, O(k) . k for k £ S can be similarly rephr.sed,
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but since they are somewhat more complicated to state, and lose their

intuitive content, we will not state them here.

Part 4) of Proposition 2.1 has a stronger form. In EPS (1978),

under the assumption of (SC), it was concluded that hi(j) = j and

Hi(j) - j for all i - 1,...,n, j = O,...,M. Griffith (1980) concluded

the same result assuming the weaker condition (C). Griffith also shoved

that the rpsult was false under (WC).

§ 5. Multistate trportance and coherence.,

Besides introducing the three coherence assumptions mentioned in

the preceding section, Griffith (1980) has introduced a concept of multi-

state importance. Previously Barlow and Wu (1978) had discussed a

measure of multistate importance. In this section we discuss a simfole

connection between relevance, coherence and imoortance and conqeqently

relate the various concepts of these -authors. This also leadq to nev

concepts of importance. The simple principle follvs.

(5.1) Importance Principle. A component i is relevant at a state j if

there exists a state vector x such that a certain condition involving

iJ and the structure function holds. A system is coherent if a relevance

condition holds for all components and certain states. The importance

of a component i at a state j is a measure of the mmber of state vectors

x for which the relevance condition holds.

(5.2) Example. Consider a binary nondecreasing structure function )(x).

Then i is relevant if there is an x such that (,x< 2 (,x). The

system is coherent if the condition holds for every component i. Thn"

measures of importance are

I (i) L- Card {(1lx (ix €I~)

2 i,- -

i
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which is called the structural Importance and

IM1 - P I V(ol,_) < v(i ip I_

which is called the Birnbaum importance.

Now the connection Litween the various types of multistate condi-

tions should be clear. The importance measure of Barlow and Ili is

I S(i) - P({ (ji,X) - J, t(ki,X) j,k t j}

where f is the particular multistate structure function of those authors.

Jxever the condition inside the probability statement is the basic form

of the coherence condition of EPS, i.e. these authors say the system is

coherent if the condition holds for every component i and every state j.

This is also the condition which Griffith called strongly coherent (SC).

In a similar way we may extend the other two coherence concepts of

Griffith to importance concepts. Concepts (C) and (Q4C) of Sortion 4

become

I Cci) - 1 { ¢((J-1).,X) _ (i~)

and

iwc(i) =1P {€(Ol,x) <(M.,x)}

Taking N Xi-J} - Il we obtain two structural concepts of importance.

These can now be compared with the concept of ,miltistate importance de-

fined by Griffith. For utilities a, a I for 1=1 .... ", the concept of

Griffith becomes
M

Ij(i) - P {{((J-l)i X) < NJ, (_ ,X)}

- E[¢(.JiA) 1 - iE[¢(-l)i X.
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Another tiortance measure that this suggests is

(I) =P {((J-1)i,X) < O(Ji,X) J}

All but one of the above can be interpreted as the importance of capon-

ent i at state j (?WC(i) can be interpreted as the importance of compon-

ent i). Griffith considers also the importance of a component i as the

vector

IM1 -(iI(i) , 12(i)',...,IM(i)).

However it is also possible to consider the importance of the component i

as so numerical measure of the I (i), e.g. [ Ij(i). The value of

j=l

Griffith's concept however is that it preserves a property basic to the

binary case, i.e., from Proposition 4.1 of Griffith (1980)

E(#(X)) - E(O(OX)) + _(i) (P (X.>l))P(X.>2), .. ,PC'T.',)

I'
This gives that if component i is stochastically improved, i.e.,P(Yi) <

P*(]X. j) for J-l,...,M, then the improvement in the system is

_(i) • (P (Xial) - P (xi>1),... ,P* (X>' ) - P (Yizl))

Some relations which hold between the various importance relations intro-

duced are
I SC (I) l (1)() I C M IWC(M

and

C

| 6. Application of the deayosition result.

We now apply the results of Section 2 to the mltistate s.stem of
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Barlow and Wu (1978). According to their definition, 4 is a multistate

structure function if we can write

(6.1) C(z) - max min z- = min mx z1

1<rlp CPr 1<s<k iUKs

where Pl,..., p are the min path sets and K1 ,...,K k are the nin cut sets

of sane binary coherent system 0 and z = (z1, ... zn ) is the component state

vector with 0 < zi < M for i-1,...,n.

It is clear that

Uk - k xis a min path vector of 0

and

Lk - { (M-k)yk I y is a min cut vector of }

For z c Uk, where _z-k, it follows that

Uk(Z) = {(i,k) I i £ Cl(x)1

where Cl(x) is the min path set of 0 (in the sense of Rar2ov and Proschan

(1975))corresponding to x; i.e., one of the PP .. .Pp. Similarly, for

z Lk , where z - (M-k) k,

Lk(z) - { (i,k) : ico(Y)

where C(Z) is the min cut set of 0 corresponding to y; i.e., one of the

KC,.... .Kk

(6.2) Remark. Notice that the condition in Theorem 2.4 becomes: for

k>O, () > k if and only if there is a min path vector ? of the associ-

ated binary coherent system 0 such that z > kx° .

The following equivalent conditions can now be stated. Here rk

is the binary function related to C by (2.6).

I



-15-

(6.3) Lema. The following conditions are equivalent. Let k > o.

(i) C(z) > k

(ii) Ck(a(z)) - 1

(iii) *(azk(z)) ,, 1

where ak(z) - (alk()...,ank(Z)) and aik(Z) is defined in section 2.

Proof. We've already proven the equivalence of (i) and (ii). No~v sup-

pose th .t Ck((z)) - 1. Then there is a min path vector x of t such

that z - kx and a(z) - 1 for all (ij) c Ul (kx); i.e., aik(Z) = 1 for all

i C C(x). Hence ak(z) is a path vector for * and so (tck(z)) = 1. On the

other hand, if #(ak(z)) - 1, then ak(z) is a path vector for d. Consequently

0there is amin path vector x of # such that ak(z) > x° . Thus z. > k for

all i E C(x), which implies that z > kx° c Uk. Hence (z) > k le-- Renark

6.2.

We now have the alternate way of ecpressing the decomposition Theorem

2.8 for this class of multistate structure functions. It follovs in-

mediately from the Lwna.

(6.4) Theorem. (z) = L kI *(ak(z))

Anong the class of all monotone structure functions, we can now

describe those of type (6.1). A similar result exists if min cut sets

instead of min path sets are used.

(6.5) Theorem. Let 4 be an NMN. Then the following are equivalent.

(i) 0 is of the form (6.1).

(ii) Fbr k ,2,...,, Uk - kU .

Proof. It follows from the renarks below (6.1) that (i) implies (ii),

so we need only show that (ii) implies (i). Thus let 0 be an !VMS
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satisfying (ii). Suppose that z c U1. Then Ul(z) { (i,zi)

zi f 0). Hence if zi f O, it must be that z, = 1 for otherwise Mz UT.M

Let P(z) - { i : z- 1 be its "path set". Fran this it is easy to

conclude that

€(y) - max inin Yil

i<rip i c Pr

where p = card U1 and P, ... Pp are the path sets corresponding to each

of the path vectors in U1, Since Uk = U1, we get then that

m ax min y1l<ri Wr

for kul,...,M. Thus if we define the binary structure function 4 of

the binary vector x - (xit::*! Xn) by *(x) = max min i, we have

.<r p i cr

- (Ok(z)).

M M
Since O(z - ak(a(z)) - ,(ak(z)), it readily follows that

k-1 k-i

m(z) - max min zi ;

1 <rp icPr

i.e., 4 is the form (6.1).

(6.6) Remark. Borges and Rodrigues (1980) have also obtained a charac-

terization of the Barlow and Wu multistate system-which is different

than the one here.



-17-

REFCES

1)Abmad, A. N., Langberg, N. A., Leon, R. and Proschan, F. (1978).
TWo concepts of positive dependence with applications in rmilti-
variate analysis. Technical Report 1,486, Deprtmo-nt of Rtatisz-
tics, Florida State University.

[2) Barlow, R. E. and MUi A. S. (1978). Coherent systems with rmlti-
state comnponents. Math. of Operxations Research, 3. 275-281.

[31 Barlow, R. E. and Proechan, F. (1975). Statisticil r;' of
Reliability and Life Testing. Holt, Rinehart ird Wiinston, Nciv
York.-

(4] Block, H. W. and Savits, T. 11. (1980). Mfultivariate T!FRA listrihui-
tions. Ann. Probability, 8, 793-801,

[5J Borges, W. S. and Rlodrigues, F. W. On the Lxi(-natic theory of
umiltistate coherent structures. Unpublished report.

[6] Esary, J. D. and Mrshall, A. W. (1079). M1tiv'rrinto distrih'li-
tions with increasing hazard rate averages. Ann. ProhnhilityK,
7, 359-370.

[71 El-Neweihi, E., Proschan, F. and Sethuraman, J. (197,1). ,1-
state coherent system.. J. Appl. Prob., 15, 075-('8

[82 Griffith, IF. S. (1980). !ultistate relinhility J&i'.,. Arlwd.
Prob., 17, 735-744. II

[9) Ross, S. (1970). Multi-valued state comiponent rolinhility
Ann. Probability, 7, 379-383.



SECURI TY CLASSIVIC A71cJN 01 rHis PAGE (Who,. 1P.I. iA,.t-i.d)

REPORT DOCUMENTATION PAGE AIINRUIF.

I. REPO)RT HUMAI5RX1 GOVT AC CFSSION NO 3 RI ClOIF NT-, AT At~ 01, -. f

4. TITLE (inl.04,1 -YFO OPP ,ftP ,,i ,

6 A Decarposition for Multistate Monotone Syste46 ' 01 w ~ -11 -A

7. AUTHOA(s) / -CFNTRA( T OR (,ANT N MIflF tF

-i* w~r W/lock 41 Thcanas H.Savits -rM-ffl4-76-C-0B39

9. PERFORMING ORGANIZATION NAM4E AND ADDRESS 0 FFORAM rL FM fTT PFFOJFC-T 7 A 11
ARE A A WORK UNIT NomifP

University of Pittsburgh

IF. CONTROLLING OFFICE NAME AND ADDRESS 7?

Office of Naval Research F / JanliwA" 8_-
Dept. of Navy 1 - i NIJMFFPf o GrS-

Arlingtn VA227-__ 17
IdMONITORINGgAG.E~ NAY F ADDRESSiSMI iermwe itop F-....* of).a) I5SL$( IRITY ( L ASS (oI1h I,.,j.,

TJ7cLASIFIrn

5'FIF S!)I IF

16. DISTRIPUTION STATEMENT (of this Reort)

Approved for public; distribution unlimited-

IT. DISTRIBUTION STATEMENT (of the abstract entered in Block 20. it ditter'ni lIro, Hpo

W. SUPPLEMENTARY NOTES

It KEY WORDS (C-Z -11e .n .. ,g aid. $#necesr~a y anlld.. yat b hlvbn Ank ,,,

Multistate structure function, bounds, system perfomance function,
a erence, relevance, importance, associated canponents.

20 AS rCT (Cnnfinue oin .,,a side #I not itsooty and Identify by hiI . -1-1~i,,

AUTAA deccmposition theorem for rmltistate structure functions is proven

This result is applied to obtain bounds for the systmr performance function.
Another application is made to interpret the rRiltistate structures of Blarlow

and Uz. Various concepts of muiltistate importance and coherence are also
discussed.)-

DD JA 7 1473 TflrTA':STrimT
SECURITY Ft, ASif i ATI17.

4
, r 1 .1 A 1F "



DAT

FILMEI

ITI


